• <samp id="ey0os"><tbody id="ey0os"></tbody></samp>
    <strike id="ey0os"><s id="ey0os"></s></strike>
  • <strike id="ey0os"><td id="ey0os"></td></strike>
    <tfoot id="ey0os"><wbr id="ey0os"></wbr></tfoot>
  • <ul id="ey0os"><pre id="ey0os"></pre></ul>
    欧美v在线,亚洲精品理论电影在线观看,国产99在线观看,九九久久人妻一区精品色,无码人妻少妇色欲AV一区二区,粉嫩av一区二区三区蜜臀,成人亚洲欧美久久久久,久久狠色噜噜狠狠狠狠97

    聯系我們

    地址:石家莊市橋西區石風路
    郵箱:shifengfengji@163.com
    座機:0311-83813011
          0311-83803182
    手機:馮先生 13784332318 張先生 13931883405

    您現在的位置:首頁 > 業內資訊業內資訊

    石家莊煤礦風機運行狀態的預測研究

    作者:石家莊風機     日期:2014-10-27     瀏覽:1164     

     石家莊風機廠 石家莊風機 石家莊市風機廠 石家莊風機維修 石家莊風機銷售

    石家莊煤礦風機運行狀態的預測研究
    煤礦風機是礦井工作人員的呼吸機,其可靠性直接影響井下生產和工人的生命安全,是重要的通風設備。目前我國對礦山設備的維修很落后,大都采用傳統的定期維修方式,這種維修方式會造成維修過剩或維修不足,其結果可能是原本穩定的設備,經過維修反而更易出現故障,或設備“帶病”運行造成重大事故。所以一種新的維修方式—按狀態維修成為設備維修的發展方向,這種維修的特點是,沒有具體的維修周期,通過對設備運行狀態的實時監測,以及歷史數據的分析,判斷機器設備的運轉狀態,并對未來某段時間的設備運轉狀態進行預測,根據監測數據判斷不同的故障類型,制定不同的維修措施。為此,進行了煤礦通風機運行狀態預測方法的研究。
    論文通過對風機故障機理的研究提出了基于振動信號的風機運行狀態的預測研究,通過對信號分析方法以及預測方法的歸納分析,同時考慮到風機振動信號的非平穩性,提出了 EMD 與神經網絡相結合的風機運行狀態預測方法。
    論文將傳感器技術與計算機技術相結合,構建了礦井風機振動數據的實時采集系統,完成了系統軟硬件設計;將 LabVIEW 與 SQL 數據庫技術相結合構建了礦井風機的數據存儲與管理系統,實現對實時采集數據、定周期采集數據、故障數據、診斷結果數據以及現場技術人員診斷與維修數據的有效管理,為對風機運行狀態作進一步分析提供完整的歷史檔案;將 EMD 與神經網絡相結合構建了基于EMD 的神經網絡風機運行狀態預測模型,在 MATLAB 環境下實現了風機振動信號的 EMD 分解,完成了直接神經網絡預測方法與基于 EMD 的神經網絡預測方法的比較研究,結果表明后者有更好的預測準確性。
    Abstract
    The coal mine ventilator is the mine workers’ breathing machine. Its spindlereliability influence the mine production and the safety of workers directly. It is animportant ventilative equipment. At present, mining equipment maintenance in ourcountry is developing lag behind. We always use the traditional and regular maintenance.It may cause the excessive or inadequate maintenance. The stable equipment may haveproblems by this maintenance, or cause a major accident by error operating. Thus a newway of maintenance, condition based-maintenance may be the direction of equipmentmaintenance. It doesn’t have specific maintenance cycles. This method can determine theoperation state of the machine and predict a future period of equipment’ running state bymonitoring the operating status of the equipment in real time and analyzing the historydata. According to the monitoring data, we can judge the different fault types and makedifferent maintenance measures. Therefore, this article has researched the predictionmethod of mine ventilator’s running state.
    This article has proposed the research of the mine ventilator’s running stateprediction through researching the fault mechanism of the mine ventilator. At the sametime the author has proposed the prediction method of the mine ventilator running stateprediction combing EMD with the neutral network considering the nonstationarity of themine ventilator’ vibration signal.
    Firstly, the author built a real-time data acquisition system of the mine ventilator anddesigned the hardware and software of the system by combining the sensor withcomputer technology. Secondly, the author built a data storage and management systemof the mine ventilator by combining the LabVIEW and the SQL database technology. Inthis way, the effective management of the Real-time collected data, fixed cycle data, faultdata, diagnosis result data and field technical personnel diagnosis and maintenance datahas been achieved. They can provide a complete history file for further analysis of themine ventilator running state. Finally, the author built a mine ventilator forecast modelbased on the EMD and neural network by combining the EMD and neural networktechnology. The author used the EMD to decompose mine ventilator signals by theMATLAB completed the comparative study on the method of direct neural networkprediction and the method of EMD-based neural network prediction. The results showthat the latter has better predictive accuracy.Figure 56; Table 22; Reference 60Keywords: condition monitoring, LABVIEW, SQL, Hilbert-Huang analysis, NeuralNetworksChinese books catalog: TH17
     

    主站蜘蛛池模板: 精品午夜福利在线观看| 亚洲国产精品成人一区二区在线 | 亚洲国产中文综合专区在| 亚洲欧美日韩综合久久久| 中文字幕亚洲综合久久| 最新精品国产自偷在自线| 亚洲欧美日韩综合久久久| 国产SUV精品一区二区6| 亚洲av成人在线一区| 91视频免费观看网站| 欧美成人乱码一二三四区| 狠狠久久精品中文字幕无码 | 在线日韩日本国产亚洲| 最新国产精品无码| 国产精品自拍视频第一页| 亚洲老熟女性亚洲| 中文字幕精品亚洲无线码二区| 国产成人a在线观看视频免费| 97在线视频人妻无码| 国产偷窥熟女高潮精品视频| 亚洲国产精品综合久久20| 免费无码又爽又刺激高潮的视频免费| 国内精品久久久久影院老司机| 成人国产永久福利看片 | 久久精品无码专区免费青青| 99久久久无码国产精品动漫| 无码少妇高潮浪潮av久久| 日韩一区二区黄色一级片| 国产精品xxx大片免费观看| 亚洲精品视频网| 99久久国产热无码精品免费| 午夜精品电影你懂的| 青草精品国产福利在线视频| 狠狠亚洲色一日本高清色| 国产免费又色又爽粗视频| 国产毛片在线看| 国产欧美另类久久久精品丝瓜| 国产精品美女自慰喷水| 无码精品一区二区免费AV | 少妇无码精油按摩专区| 亚洲成人四虎在线播放|